Edinburgh Speech Tools
2.1-release
EST_fft.h
Go to the documentation of this file.
1
/*************************************************************************/
2
/* */
3
/* Centre for Speech Technology Research */
4
/* University of Edinburgh, UK */
5
/* Copyright (c) 1995,1996 */
6
/* All Rights Reserved. */
7
/* */
8
/* Permission is hereby granted, free of charge, to use and distribute */
9
/* this software and its documentation without restriction, including */
10
/* without limitation the rights to use, copy, modify, merge, publish, */
11
/* distribute, sublicense, and/or sell copies of this work, and to */
12
/* permit persons to whom this work is furnished to do so, subject to */
13
/* the following conditions: */
14
/* 1. The code must retain the above copyright notice, this list of */
15
/* conditions and the following disclaimer. */
16
/* 2. Any modifications must be clearly marked as such. */
17
/* 3. Original authors' names are not deleted. */
18
/* 4. The authors' names are not used to endorse or promote products */
19
/* derived from this software without specific prior written */
20
/* permission. */
21
/* */
22
/* THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK */
23
/* DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING */
24
/* ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT */
25
/* SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE */
26
/* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES */
27
/* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN */
28
/* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, */
29
/* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF */
30
/* THIS SOFTWARE. */
31
/* */
32
/*************************************************************************/
33
34
35
#ifndef __EST_FFT_H__
36
#define __EST_FFT_H__
37
38
#include "
EST_Wave.h
"
39
#include "
EST_Track.h
"
40
#include "
EST_FMatrix.h
"
41
42
/**@defgroup FastFourierTransformfunctions Fast Fourier Transform functions
43
@ingroup FunctionsForGeneratingFrames
44
45
These are the low level functions where the actual FFT is
46
performed. Both slow and fast implementations are available for
47
historical reasons. They have identical functionality. At this time,
48
vectors of complex numbers are handled as pairs of vectors of real and
49
imaginary numbers.
50
51
### What is a Fourier Transform ?
52
53
The Fourier transform of a signal gives us a frequency-domain
54
representation of a time-domain signal. In discrete time, the Fourier
55
Transform is called a Discrete Fourier Transform (DFT) and is given
56
by:
57
58
\f[y_k = \sum_{t=0}^{n-1} x_t \; \omega_{n}^{kt} \; ; \; k=0...n-1 \f]
59
60
where \f$y = (y_0,y_1,... y_{n-1})\f$ is the DFT (of order \f$n\f$ ) of the
61
signal \f$x = (x_0,x_1,... x_{n-1})\f$, where
62
\f$\omega_{n}^{0},\omega_{n}^{1},... \omega_{n}^{n-1}\f$ are the n
63
complex nth roots of 1.
64
65
66
The Fast Fourier Transform (FFT) is a very efficient implementation of
67
a Discrete Fourier Transform. See, for example "Algorithms" by Thomas
68
H. Cormen, Charles E. Leiserson and Ronald L. Rivest (pub. MIT Press),
69
or any signal processing textbook.
70
71
*/
72
73
///@{
74
75
/** \brief Basic in-place FFT.
76
77
There's no point actually using this - use \ref fastFFT
78
instead. However, the code in this function closely matches the
79
classic FORTRAN version given in many text books, so is at least easy
80
to follow for new users.
81
82
The length of real and imag must be the same, and must be
83
a power of 2 (e.g. 128).
84
85
@see slowIFFT
86
@see FastFFT */
87
int
slowFFT
(
EST_FVector
&real,
EST_FVector
&imag);
88
89
/** \brief Alternate name for slowFFT
90
*/
91
inline
int
FFT
(
EST_FVector
&real,
EST_FVector
&imag){
92
return
slowFFT
(real, imag);
93
}
94
95
/** \brief Basic inverse in-place FFT
96
*/
97
int
slowIFFT
(
EST_FVector
&real,
EST_FVector
&imag);
98
99
/** \brief Alternate name for slowIFFT
100
*/
101
inline
int
IFFT
(
EST_FVector
&real,
EST_FVector
&imag){
102
return
slowIFFT
(real, imag);
103
}
104
105
/** \brief Power spectrum using the fastFFT function.
106
107
The power spectrum is simply the squared magnitude of the
108
FFT. The result real and imaginary parts are both set equal
109
to the power spectrum (you only need one of them!)
110
*/
111
int
power_spectrum
(
EST_FVector
&real,
EST_FVector
&imag);
112
113
/** \brief Power spectrum using the slowFFT function
114
*/
115
int
power_spectrum_slow
(
EST_FVector
&real,
EST_FVector
&imag);
116
117
/** \brief Fast FFT
118
An optimised implementation by Tony Robinson to be used
119
in preference to slowFFT
120
*/
121
int
fastFFT
(
EST_FVector
&invec);
122
123
// Auxiliary for fastFFT
124
int
fastlog2
(
int
);
125
126
///@}
127
128
129
#endif // __EST_FFT_H__
130
IFFT
int IFFT(EST_FVector &real, EST_FVector &imag)
Alternate name for slowIFFT.
Definition:
EST_fft.h:101
EST_Wave.h
EST_FMatrix.h
EST_FVector
A vector class for floating point numbers. EST_FVector x should be used instead of float *x wherever ...
Definition:
EST_FMatrix.h:119
slowFFT
int slowFFT(EST_FVector &real, EST_FVector &imag)
Basic in-place FFT.
Definition:
fft.cc:173
fastlog2
int fastlog2(int)
Definition:
fft.cc:555
fastFFT
int fastFFT(EST_FVector &invec)
Fast FFT An optimised implementation by Tony Robinson to be used in preference to slowFFT...
Definition:
fft.cc:256
EST_Track.h
slowIFFT
int slowIFFT(EST_FVector &real, EST_FVector &imag)
Basic inverse in-place FFT.
Definition:
fft.cc:179
power_spectrum_slow
int power_spectrum_slow(EST_FVector &real, EST_FVector &imag)
Power spectrum using the slowFFT function.
Definition:
fft.cc:209
FFT
int FFT(EST_FVector &real, EST_FVector &imag)
Alternate name for slowFFT.
Definition:
EST_fft.h:91
power_spectrum
int power_spectrum(EST_FVector &real, EST_FVector &imag)
Power spectrum using the fastFFT function.
Definition:
fft.cc:222
include
sigpr
EST_fft.h
Generated on Fri Oct 6 2017 18:25:28 for Edinburgh Speech Tools by
1.8.11